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Abstruct- The Fault Tree Analysis shows the possible 
causes of a system malfunction by enumerating the suspect 
components and their respective failure modes that may 
have induced the problem. The complex systems often use 
fault trees to analyze the faults. Fault diagnosis, when it 
occurs, is performed by engineers and analysts performing 
extensive examination of all data gathered during the 
mission. International Space Station (ISS) control center 
operates on the data feedback from the system and decisions 
are made based on threshold values by using fault trees. 
Since those decisions making tasks are time critical and 
must be done promptly, the engineers who manually analyze 
the data are facing the time challenge. To automate this 
process, this paper present an approach that uses decision 
trees to capture the contents of fault trees and detect fault by 
running the data through the decision trees in real time. 
Decision trees (are also called classification trees) are the 
binary trees built based on daa it can classify the objects to 
different classes. In our case, the decision trees can classify 
different fault event or normal event. Given a set of data 
samples, decision trees can be built and trained, and then by 
running the new data through the trees, classification and 
prediction can be made. In this way, diagnostic knowledge 
for fault detection and isolation can be represented as 
diagnostic rules; we call this tree the diagnostic decision 
trees. By showing the fault path in decision tree, we also 
can point out the root cause when a fault occurs. Since all 
the procedures and algorithms are available to build decision 
trees, the trees built are cost effective, time effective. 
Because of the diagnostic decision trees are based on data 
and previous knowledge of logic, the DDT can also be 
trained to predict fault, detect unknown fault. Based on this, 
the needs for on board or service bay, real time oriented 
diagnostics can readily be met. Diagnostic Decision Trees 
are built based on the fault trees as static trees that service as 
the fundamental diagnostic trees. And the dynamic DDTs 
are built over time from the operation data. The dynamic 
DDT will add the functionalities of prediction, and will be 
able to detect unknown fault. Crew or maintenance 
engineers can use the decision tree system without having 
previous howledge or experience about the diagnosed 
system. To our knowledge, this is the first paper to propose 
a solution to build diagnostics decision trees fiom fault tree, 

which convert the reliability analysis models to diagnostic 
models. We show through mapping and ISS examples that 
the approach is feasible and effective. We also present 
future work and development. 
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1. INTRODUCTION 

Fault tree concept is developed by Bell Telephone 
Laboratories in 1962 for the U.S. Air Force for use with the 
Minuteman system. It was later adopted and extensively 
applied by the Boeing Company, is one of the most widely 
used methods in system reliability analysis for a long time 
[ 3 ] .  It is a deductive procedure for determining the various 
combinations of hardware and software failures, and human 
errors that could result in the occurrence of specified 
undesired events (referred to as top events) at the system 
level. As part of the analysis, the minimal cut sets of a fault 
tree can be determined [2]. And then fault tree can be built. 
Individual fault tree can be visualized and draw. Fault trees 
are usually individually built for each part of the system for 
each top event. It is hard to have generic software to traverse 
fault trees. In the other hand, the decision trees are matured 
data structure and it is very easy to manipulate in a software 
program. Using decision tree to represent fault tree will 
increase the operability and decrease response time for 
system diagnostic, and furthermore, its visualization will 
make users easier to see the root cause of the fault and path 
from which the fault came. As the high availability of many 
different tree algorithms implementations in computer 
science field, using decision tree to manage the fault tree no 
doubt is one of best consideration. In this paper, we present 
a method to convert existing fault trees to decision trees. 
More general way of constructing decision tree is presented. 
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The method is easy to be pro-gmnmed and run on a 
computer since the decision tree algorithms has many 
available implementations [4]. This method also provides a 
good tool for researchers on simulation and prediction tasks. 
By using this method, one can analyze the data samples 
fi-om the past and categorized them into different classes; 
abnormal, normal, and fault event in such a way that kture 
fault can be predicted fi-om the past. This could be a data 
mining and run time updating. Such artificial intelligent 
application is presented in the paper as form of fiamework 
architecture. 

Where this document is silent on a formatting question, it is 
because it is not important or is the writer’s option. When in 
doubt make a choice that makes your document readable. 

2. CONVERSION METHOD 

There are some other attempts to represent fault trees by 
other forms; one of them is building diagnostic map fi-om 
fault tree [l]. Decision trees are the trees usually, built on 
data. Let’s look at a fault tree and see how can we map it to 
the decision trees. Take a sample fault tree in the form of 
following: 

Over Voltage 

Validity 0 (1 = invalid) 
3 consecutive readings 

Voltage B <= 10 

Validity o(1 =invalid) 

Figure 1 Over Voltage Event Fault Tree 

We have 6 inputs to the trees. The inputs remain the same 
for decision tree. The corresponding decision tree should 
have the same functionality in terms of samples inputs and 
fault triggers. In the other words, the same inputs to the fault 
tree, or to the decision tree will have the same result. The 
corresponding tree can be built as in Figure 2. If the data can 
reach all the way to terminal node 6 ,  we have known that the 
system is at over voltage fault. The decision tree not only 
provides the final result if the system is at fault status, it can 
also provides the interim status by loolung at where the 
sample data end up to. 

UdA=1 UdA=O 

ValidateUdA G t e U d A  

10 

Figure 2 Decision Tree for Over Voltage 

To show more common case that includes OR gate in the 
fault tree, the other example is shown here: 

Frame count 

Fad to change m 4 seco 
GIVC enabled 

SM loss c o r n  = I (  4 not) 

3 second 

Figure 3 GNC Fail Event Fault Tree 

In this case, more balanced data inputs will end up with 
more evenly distributed decision tree. In a same way as we 
showed earlier, the corresponding decision tree is presented 
as follows: 

GNCe=t/ NCe=f s 3=t ;“.1 h3=f 
Figure 4 Decision Tree for GNC Fail 

We had demonstrated that fault trees can be shown and 
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and GNC fail fault trees. The convenient use of decision tree 
is that the available decision tree software program can 
easily pin point out a root cause of an event ( including fault 
event) by recording the edges in the path of the tree when 
giving reports and evaluation of the system status. For more 
general purpose and more easy illustration, we can abstract 
the dormation into a map and construct a decision tree 
fiom map. The map basically represents the different events, 
including fault event, in the n dimension space. When we 
deal with decision trees, we call the events classes. The class 
could be fault, nominal, or warning etc. This demonstration 
shown that the decision tree not only can derived from fiult 
tree nut also can be construct from data samples, which is 
very useful in the real time fault detection and prediction. 

Figure 5 Classes distributions 

To map to the decision tree, we use an example to explain it. 
We assume faults in the two dimension space for 
simplification of visualization. Multiple dimensions will 
follow the same rules. In Figure 5, we give an example of 
the fault scenarios, the cylinders represent normal, called 
class 1 and cubes represent faults, called class 2. We will 
use cumulative distribution function (c@ for tree 
construction. The cdf is the probability that the variable 
takes a value less than or equal to x. That is 

This can be expressed mathematically for continuous 
distribution: 

For a discrete distribution, the cdf can be expressed as 

2 

F(4 = Cfii> 
e 0  (3) 

WET? we rncss~rt a dec%inn_ treej we have a root then we 
have two branches, further, each of those branch can, has 
maximum of two branches, until no further branches, we 
reach the bottom of the tree and we done. Those procedures 
could be said in another way; we are splitting the data until 
it couldn't split any more. So what we need is where to split. 
and when do we stop splitting. With the method of 
accumulate distribution function, we construct the trees in 
following steps. First, calculate the cdf for each class. 
Second, compare the result for each class in all the points. 
Third, the largest value will be picked and the x will be 
the split point. Repeat first to third step until no more point 
to split. In the example, we calculate the cdffor each class as 
a function of each attribute (see Figure 5), and then pick the 
split point where the difference of the two cdfvalues is 
maximurn. 

-fi- 

n;: 
SI s2 SI s5 

Figure 6 Calculate split point by using c&(l) 

We repeatedly split until all samples in a node are of the 
same class. In Figure 6, the horizontal axis is the possible 
split points s, 1 < i <= 5 corresponding to the x-axis in 
Figure 6 ,  and the vertical axis is the value of the cdf for each 
class. In Figure 6 f, is the cdfvalue for class 1 (cylinders) 

and f, is the cdfvalue for class 2 (cubes). 
In Figue 5, the vertical axis is the possible split points. 
SI 5 < i <= 10 corresponding to the y-axis in Figure 5, and 
the horizontal axis is the value of the cdffor each class. In 
Figure 6 A is the cdfvalue for class 1 (cylinders) and f, 
is the cdfvalue for class 2 (cubes). The purpose is to find 
the point where the distance between f, and f, is the 
maximum. To calculate the cdf; we used the estimated 
function n, / N ,  . The total number of samples in class 1 is 

6, and in class 2 is 4. AT, = 6 and iv, = 4. As shown in 

Fiagpre 5 at split point SI , we have t h e 5  value of 116, and 

fi value of 0. At split point s, we have the value of 

216, and afi value of 114. At split point s, we have the A 
value no change, still 216 or 113, and a f7 value of 214 or 

112. At split point S, we have the A value of 112 and a f, 
value of 314. At split point s, .we have the f, value of 516 

and a f, value of no change, 314. 
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Figure 7 Calculate Split Point Using cdf(2) 

have the fi value of 316, and a f i  value of 0. With the 

same calculations, at split point s, we have the f, value of 

416 and a f i  value of 0. Again, at split point s, we have 

the f, value of 5/6 and a f, value of 1/4. At split point 

s,, ,we have the A value of 1 and a f7 value of 214. 

From Fi-gues 6 and 7, we can see that the split S,g has the 
maximum distance (416) between f, and f, among all 

others. Therefore, we pick the fist  split point as s, . After 

we split the set on s,, we have two subsets, one of the 
subsets has only class 1 in it, and so we don't need to do the 
further split on this subset. But on the other subset, we will 
repeat the same calculations on the remaining samples to 
fmd the further split points. The procedures to calculate the 
cdf and se!ect the maximum distance between f, and 

f2 are the same as above. The constructed tree is shown in 
Figure 8. 

I 

\ s3 1 
-.-..-, 

+-- / /" ' 
i 

Figure 8 Final Decision Tree 

When the real time data come in, we let them go through the 
decision tree that we constructed. The faults occurred when 
the data sample fall in fault class at the terminal node. To 
illustrate how the fault happened, we can show the fault by 
tracking the path that the data went through. Visualization 
of the path with the distinctive color or shape will show user 
the clear clue of cause of the fault. 

This method not only can apply to the conversion of the 
fault trees to decision trees, it can also construct decision 
trees from data samples at run time of the operation of ISS 
over time. By simply select a set of data samples ffom time 
to time, we can built decision trees. In later time, the built 
decision trees can be used to compare the new data and to 
predict future fault. The best use of such trees is to build 
trees by applying grouped fault scenarios. Then applying 
real time data to the tree to compare the pattern, the faults 
can be detected when a pattern is matched. 

This method can not only apply to the conversion of the 
fault trees to decision trees, it can also construct decision 
trees from data samples at run time of the operation of 
International Space Station over time. We can select a set of 
data samples, especially the ones that are representative, 
fiom time to time and built decision trees for those systems 
by fault scenarios. Data patterns are captured in the tree and 
can be recognized when the future data samples pass 
through the trees. When real time data samples applied to 
the tree, the faults pattern could be recognized and the fault 
could be detected. 

3. APPL~CATIONS 

From above illustration, we can migrate the fault trees to 
decision trees. We also can build decision trees from 
event and data. The decision trees converted fiom fault 
trees could be used as diagnostic tools when the fault 
happened, run the data through the trees and find out 
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applications are also possible by utilizing decision trees. 
One we know it that the decision tree is very well suit for 
data mining task, we can apply our trees to an data 
mining application targeting at recognizing fault patterns 
and do early fault detection and prediction. A design 
model , a h e  work model, is presented in Figure 9. In 
the figure, we can see the decision trees fit into 
knowledge discovery part of the data mining process [6]. 
We have initial decision trees in there for fault diagnostic 
and we have on going decision trees building on real time 
when the system is running. We can build such a tree that 
records fault patterns each time when a fault event 
occurs. Especially, we record the fault trends patterns so 
we can use such tree to recognize fault in its early stage. 

Figure 9 Decision trees in data mining application 

4. CONCLUSION 

We started from ISS fault trees example to migrate to 
decision trees, presented a method to convert fault trees to 
decision trees. The method shows that the visualizations of 
root cause of fault are easier and the tree manipulating 
becomes more programmatic via available decision tree 
programs. The visualization of decision trees for the 
diagnostic shows a format of straight forward and easy 
understands. For ISS real time fault diagnostic, the status of 
the systems could be shown by nmning the signals through 
the trees and see where it stops at. The other advantage to 
use decision trees is that the trees can learn the fault patterns 
and predict the future fault from the historic data. The 
learning is not only on the static data sets but also can be 
online, through accumulating the real time data sets, the 
decision trees can gain and store faults patterns in the trees 
and recognize them when they come. 

5. FUTURE DEVELOPMENT 

f i s  paper presented the method to migrate the fault trees to 
decision trees, which lays a good foundation for using data 
mining technique in advanced diagnostic system. The next 
step will naturally fall to a project to implement a data 
mining software for fault detection, prediction, and analysis. 
Such software will use the decision trees as an engine inside 

nf the A!5g%?StiC system q$hti-Si_nn. This engiDe w:!! he 
able to gain knowledge of fault patterns then recognize it. 

REFERENCES 

[ l ]  Tariq Assaf and Joanne Bechta Dugan, “Automatic 
generation of diagnostic expert systems fiom fault trees,” 
Reliability and Maintainability Symposium, January 2003. 

[2] Zhihua Tang and Joanne Bechta Dugan, “Minimal Cut Set 
and Sequence Generation for Dynamic Fault Trees,” 
Reliability and Maintainability Symposium, January 2004. 

[3]Joanne Bechta Dugan, “Sohare system analysis using 
fault trees,” Chapter 15, Handbook of Sofiware Reliability 
Engineering, editor MR. Lyu, IEEE Computer Society 
Press, McGraw-Hill Publication 1996. 

[4] J. R Quinlw Induction of Decision Trees, Machine 
Learning, v.1 n.1, p.81-106, 1986 

[5] Ping. Li, Richard. E. Haskell, Darrin. M. Hanna, 
“Optimizing Fuzzy Decision Tree by Using Genetic 
Algorithms,” Proceedings of the International Conference 
on Artificial Intelligence, June, 2003, Las Vegas, USA 

[6] Olaru, C. and L. Wehenkel, Data Mining. IEEE Computer 
Applications in Power, 1999. 12(3): p. 19-25. 

BIOGRAPHY 

Charles Lee is the Technical Lead on 
Mobile Agents project at NASA Ames 
Research Center. He hold a Ph.D. in 
systems engineering and computer science 
@om Oakland Universiv, in Rochester, 
Michigan. Completed research projects 
includes several systems that have been 

successful(y deployed at the Mars Desert Research Station, 
providing functions for extending human performance and 
situational awareness into the planetaty exploration domain 
targeting future Mars exploration. These include robust 
GPS switchboard on-demand services that provide GPS 
information with awareness of loss and the ability to regain 
wireless network connections, and a store and forward 
architecture to maintain data continuity in the event of 
network connection loss. In addition, Dr. Lee developed 
distributed agents that serve sensor information through a 
publish and subscribe architecture in heterogeneous 
computer environments, and a mapping and planning 
system that provides location and orientation of mobile 

5 



rovers and astronauts on ropogruphic miup j%i FiiiGiguZh 
planning and real time monitoring. Other work includes 
joint development of custom sofhare to provide access to 
avionics data for Advanced Diagnostics System (ADS) 
applications, and collection and organization of 
International Space Station QSSJ data sets by f m l t  scenario, 
along with liaison with ADS developers and users in the 
design of data interfaces, user interfaces and tools relevant 
to ADS on ISS. He developed the first version of Caution 
and Warning cube visualization software that handles the 
command and data handling events for fault detection. 

Richard Alena is a Computer 
Engineer and Group Lead for the 
Intelligent Mobile Technologies 
research and development team in 
Computational Sciences Division at 
NASA Ames. He led the design and 
development of distributed mobile 

data systems supporting geological and biological scientrjic 
surveys in the Canadian Arctic and American Desert, 
investigating advanced computing solutions for planetmy 
aploration and coordinating satellite and wireless 
networks with wearable computing _for multi-agent 
simulations. Mr. AIena r i  the co-lead for the joint ARC-JSC 
Advanced Diagnostic Systems for International Space 
Station Project, developing model-based diagnostic tools 
for space operations. He is also involved with TEAMS and 
Livingstone researchers, supporting development of 
subsystem interaction models and Caution and Warning 
analysis. As a senior computer scientist he was the chief 
architect of a flight experiment conducted aboard Shuttle 
and Mir using laptop computers, personal digital assistants 
and servers in a wireless network for the International 
Space Station. He is also the technical lead for the Databus 
Analysis Tool for International Space Station on-orbit 
diagnosis. Mr. Alena hold a B. S. and M.S. in Electrical 
Engineering and Computer Science @om the University of 
California, Berke!q and hold a US. patent for “Three 
Electrode Hydroquinone Subcutaneous Equilibrating 
Tonometer.” He is the winner of a NASA Silver Snoopy 
Award in 2002 and a NASA Space Act Award for A 
Comprehensive Toolset for Model-Based Health Monitoring 
and Diagnostics. He has also been awarded a JSC Group 
Achievement Award in 2000 for his participation in the 
Cockpit Avionics Upgrade DisplqKontrol Application 
Requirements Team, a NASA Group Achievement Award in 
1998 for his work on the ISS Phase I Program Team and a 
Space Flight Awareness Award in 1997. 

Peter Robinson earned a bachelor’s degree in computer 
science f iom the Universiq of California at Santa Cruz in 
I987. Since I988 he has worked as a computer scientist at 
NASA Ames on a wide variety of domains addressing issues 
of integrated quantitativdqualitative modeling for design, 

6 

fkdt dkbp?sis ~d ~n.~t*n! .  CtlrrPntlqr h P  i.x both pro/’ect 
manager, sojhare and modeling lead of the ISStrider 
project - a project developing model-based diagnosis 
reasoning tools to support the Fault Detection Isolation and 
Recovery (FDIR) of the International Space Station QSS) 
Command and Data Handling (C&DH) system. In this 
capacity, he has lead the advocacy of the ISStrider project 
both at NASA Ames and JSC as well as the design, 
sofhardmodel development and analysis of the ISStrider 
sofhYare system. In his sixteen years at NASA Ames he has 
applied advanced remoning method to diverse set of 
research and development applications including: 1) tools 
to support design qf life-support systems 2) science 
instrument control systems for a Mars robotic geologist as 
well as a Bioreactor to model earthly-Earth atmosphere 
conditionsnife-support systems analogs 4) integrated 
quantitativdqualitative diagnosis models of the space 
shuttle (STS) reaction control systems (RCS) 5) &namics 
modeling of the Deep Space I P S I )  spacecraft to support 
thruster diagnosis 6) automated grid generation tools to 
support computational fluid cfvnamics (CFD) modeling 7) 
advanced 3 0  visualization methods for aircraft descent and 
NASA program management and 8) sofiware formal 
methodr tool development for tracing dependencies through 
automatically generated programs. 


